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Sensor integration into machining equipment has become an important factor for gaining deep process insights 

mainly driven by increasingly smaller and cheaper sensors and transmitters. Due to advances in microelectronics 

and communication technology, a broader field of applications in production processes and machine tools can be 

addressed using sensing devices and their implementation potentials. Ensuring a sensitive but robust data stream 

from close to the actual process allows not only reliable monitoring but also process and quality control based on 

sensor information. This paper provides an overview of the utilization of sensor data for the purpose of condition 

monitoring, model fitting and real-time control coping with stochastic effects. Examples of sensor integration in 

fields of injection molding, roll forming and heavy-duty milling comprise the state of the art of sensor 

implementation, data evaluation and possible feedback loops in the respective application scenarios. 

1. INTRODUCTION 

Motivated by the aim of achieving high quality in processes and parts, reduction of setup 

time and process understanding, sensor integration is becoming increasingly important (see 

[1]). This paper shows sophisticated possibilities for sensor-equipped processes and summa-

rizes the state of the art of process monitoring and control briefly.  

Sensors on semiconductor basis, piezo-resistive strain gauges and piezoelectric sensors 

were developed with the spread of the silicon technology in the 1970s. Since then, innova-

tions like “system on chip” (SoC) and integrated MEMS (Micro Electro Mechanical Systems) 

together with further miniaturization, increasing intelligence and decreasing prices of such 

components led to today’s sensor technology [2]. The application areas for tool system inte-

grated sensors are subject to competing requirements for time response or location  

of sensors. The used sensors are usually selected with respect to their sensitivity, reliability, 

costs and the measured parameters that are fundamental to the process being observed. As 
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modern manufacturing processes become more and more complex, the benefits of enhanced 

sensor-use increased. Tooling applications including sensor systems which are inexpensive, 

robust for the use in the processing environment and easy to use are required. In addition, 

there must be an overriding advantage for the user that is in proportion to the costs incurred 

by the additional sensors. Jemielniak states in [3] that also user friendliness and reliability are 

required for industrially applicable systems. 

 

Fig. 1. Overcoming limits of conventional processes 

Leading towards improvements in process efficiency and quality, as well as providing 

enhanced applicability requires overcoming existing limits of conventional processes, as 

summarized in Fig 1. In particular, stochastic phenomena such as geometry and shape 

deviations of raw parts due to preliminary processes like casting, forming or even 3D-printing 

together with changing material properties of raw material batches take significant influence 

in industrial process application. In conventional processes, these aspects often cause  

a conservative setting of process parameters and thus reduce the economic efficiency.  

A reasonable approach to meet modern requirements in manufacturing processes and to 

handle stochastically occurring events is the integration of sensors for monitoring and control 

purposes [3, 4]. However, this allows measurement and direct optimization of the conven-

tional production process, monitoring, adaptive process control and fitting of model 

parameters for the setup and validation from simulations e.g. digital twins and CPPS (Cyber 

Physical Production Systems) [5, 6].  

One common feature of all of the following sensor integration scenarios is the location 

of the sensor in the nearest part of the process being not a consumable or the product itself. 

The long lifespan of a cavity mold, a roll forming stand and a tool holder allows an important 

decrease of costs of sensitization.  

Ensuring part quality in highly repetitive processes, like injection molding, is enabled 

by detecting temperature and pressure [7] as well as heat flux [8] in the cavities. Furthermore, 

this data can be used to enable feature learning in the course of data-based process monitoring 

[9]. In [10], Monostori states another possibility for modeling and monitoring of manufac-

turing processes, which can be realized by combining sensor integration with artificial neural 

networks techniques. 
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Gaining deep insight about complex forming processes via sensor integration is 

highlighted by roll forming, where a different approach arises. An increased repeatability,  

a reduction of setup time and constant process parameters can be achieved by sensor 

integration into multi-step forming processes like roll forming. Like in many other application 

scenarios, contact normal forces in the individual forming steps [11] and the drive torques 

applied by the drive of such plants [12] are monitored. The manufactured product is mainly 

controlled by scanning the generated geometry [13]. The acquired measurement data can in 

turn be used to deepen the understanding of the entire roll forming process [14] and to derive 

optimizations concerning the tool geometry [15]. By correctly interpreting this data, adjust-

tments of the roll forming line can be made to ensure the desired high-quality output  

of the product. Furthermore, there are current studies dealing with set up times [16] and  

the validation of simulation models of the process [17, 18].  

Process control based on sensor integration in machining processes finally shows  

the potential of all three aspects of Fig 1. For instance, sensor integration in positions like in 

the work piece or e.g. in milling tools [19] lead to a new sensor for each produced part or 

substituted tool. Thus, the measurement of vibrations [20, 21] and accelerations [22] for the 

detection of unfavorable machining- or process conditions, tool wear or even a crash become 

possible. Another advantage of sensor integration into tools can be found in a rather direct 

transmission behavior with little influence of other machine parts in the vicinity of the process 

compared to other methods like monitoring the motor current or the acoustic emission 

characteristics of the process [23, 24]. At locations rather remote to the actual process, 

thermally induced changes in machine behavior [25], mechanical coupling and external 

disturbances easily play a major role when process conditions are measured.  

The extensive use of sensor information enables significant perspectives in the develop-

ment of computer science, information and communication technologies in manufacturing 

systems. Monostori in [26] states, that collaborating computational entities which are in 

intensive connection with the production systems represent CPPS. The system structure  

of tools with integrated sensors for data acquisition close to the process provides information 

preferably in real-time and uses data-accessing and data-processing services available on 

both, internal information platforms or e.g. via web by the use of cloud systems. Four 

strategies (not exclusive) can be envisioned for the use of this information:  

• process near data acquisition, which will be used for process optimization, 

• establishing a knowledge base by capturing and monitoring of the empirical process 

effects for subsequent optimization or new process design,  

• direct measurements from tool integrated sensors for feedback to controllers enabling 

process adaption by heuristic or physic-based rules,  

• information feedback and validation of process models, that allow the performance 

to be predicted. 

For further elaboration, a comprehensive overview of sensor technologies, of signal 

processing and decision-making strategies is given by Teti et al in [27]. Overall serial produc-

tion like injection molding, complex multistage processes like roll forming and batch-size-1 

processes with large impact of stochastic effects, sensor integration has a large potential 

enabling data-based process optimization. 
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2. UTILIZING SENSOR DATA 

Referring to the above mentioned four aspects of sensor information utilization, one 

option is the use of gained data from different sources for monitoring the condition of the 

process, the tool and the work piece. Due to these efforts, it is possible to achieve an increase 

in interesting aspects for quality control, predictive maintenance and cost reduction. 

Firstly, sensing the process’ condition can lead to real time evaluated process 

monitoring, causing alerts or drawing graphs in the near surroundings of the machine tool 

user like in Fig. 2A. Besides sensor information for tool condition monitoring like in [1] or 

additionally in [3, 4, 28], data of the NC can be used as additional information for anomaly 

detection [29]. These kinds of evaluation are often based on key figures and fixed rule engines 

to provide a real-time statement for online and inline analyses. Data visualization can be 

provided by monitors and cellphone apps as well [30].  

 

Fig. 2. Overview of benefits by sensor integration 

Secondly, sensor data can be pushed up in a higher level of hierarchy to support  

a holistic surveillance of several sources within one or several machine tools at a production 

site. Like in Fig. 2B, data can be accumulated via networks or cloud services [32, 33]. 

Merging different sensors’ signals and correlating signal characteristics to tool wear and work 

piece quality can be used for training algorithms, as shown by Möhring in [39]. With high 

computational power for teaching and training, artificial intelligence and machine learning 
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can be addressed [40]. Thus, simple rule engines for time-sensitive systems (Fig. 2A & C) 

can be developed and adjusted out of simulations or models of high complexity. Moreover, 

cost benefits can be achieved by in-process monitoring with real-time capabilities of signal 

processing and a feedback loop enabling a reduction of scrap parts by direct interaction and 

parameter adaption. 

Similar to these levels of monitoring strategies, process control via feedback loops can 

be accomplished. A rather simple rule engine, for instance running on an industrial PC [41], 

and local countermeasures are needed for a real-time process control, like in Fig. 2C. Once 

again, various data sources connected via networks and databases can be utilized for  

a sophisticated evaluation to adjust process parameters (Fig. 2D). In this context, aspects  

of data storage, administration and information strategies require interdisciplinary 

cooperation with fields of computer science. In this regard, the European initiative of GAIA-

X sets a new framework and standards. Rather long-term feedback loops can be set up, also 

involving production planning and CAM (computer aided manufacturing). Nevertheless, in 

terms of digital twins, complex sensor integrated feedback loops are getting faster and suitable 

for on-line measurement [42] and aiming for real-time adaption [43]. 

3. USE-CASE INJECTION MOLDING 

Injection molding is an important process for mass production of plastic parts with high 

demands on their quality, especially dimensional accuracy and surface, as well as complex 

geometries. A sensor-equipped tool provides methods for process monitoring to detect 

insufficient quality of produced parts like surface defects. To achieve high process stability 

consistently, the cycles of the injection molding process have to be as identical as possible. 

An adequate setup of the machine and process parameters can be derived via identification 

from process monitoring [44, 45]. 

In recent years, various approaches have been presented and introduced to monitor 

process parameters of injection molding in real-time and furthermore to reduce common 

quality defects such as warpage or shrinkage [46–49]. Many sensor-supported monitoring 

systems for measuring pressure and temperature are used for process monitoring of injection 

molding in order to obtain an insight into the injection molding process [50, 51]. Furthermore, 

there is a lot of potential for developing a control system as injection molding machines are 

able to learn the operations supported by machine learning and big data [52, 53]. 

3.1. SENSOR INTEGRATION IN MOLDS 

Cavity pressure measurement provides precise information about the injection process 

and is a widely acknowledged basis [54, 55, 56] for process monitoring, controlling and 

indicating errors of injection molding processes. As shown in a previous study dealing with 

the development of smart monitoring [57], cavity pressure sensors and temperature sensors 

are used to derive the optimal process window to reduce the number of scrap parts.  
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A combined pressure and temperature sensor for mold and polymer, e.g. a triple-combined 

FOS-sensor of FOS-Messtechnik GmbH, suits well for the simultaneous measurement  

of cavity pressure and melting temperature, which subsequently can be used for calculating 

process-specific rheological properties [58]. The identification of correlation between process 

parameters of injection molding and final part quality, classified on visual inspection of the 

specimens and their weight, is shown in [59]. Another study in [60] identified common 

process parameters such as cavity pressure and switching point to holding pressure, which are 

then used to forecast unplanned machine downtime. Further research in [61] shows that 

varying process parameter settings, like switching point, can be reflected in cavity pressure 

profiles. The following example focuses on the measurement of cavity pressure and the 

switching point between injection and holding pressure, which is visible in the pressure curve.  

3.2. EXPERIMENTAL SETUP FOR MONITORING CAVITY PRESSURE 

The data used in this setup was acquired from a triple-combined FOS-sensor, type 

MTPS 408-IR-BTS-XSR, installed in the mold cavity of an “Engel ES600/100 HLSEL” 

injection molding machine with an EC100/CC100 control unit. The configuration of the used 

sensor and the structure of cavity are illustrated in Fig. 3. The focused part is an ISO 20753 

multipurpose test specimen type A1 [62] and the used material is Novodur HH-112 

Acrylonitrile Butadiene Styrene (ABS). The experiments depict differences in pressure and 

part quality between three different settings of pressure properties. The switching point 

defines where low pressure, used for filling the mold, turns to high pressure for finalizing the 

molded part.  

 
Fig. 3. CAD model, real mold with embedded sensors and CAD model of test specimen 

Each single switching point setting was used to produce 5 individual parts, leading to  

a total of 15 parts and the corresponding sensor data. While all three settings show similar 

tensile strength, the varying quality features for classifying differences are the mass of the 



F. Bleicher at al./Journal of Machine Engineering, 2021, Vol. 21, No. 1, 5–21 11 

 

produced test specimen and the degree of filling the edges of the cavity. Fig. 4 shows the 

experimental results for cavity pressure regarding different switching points. 

 
Fig. 4. Pressure during the injection molding process and resulting deviation of mass related to switching point for the 

given test parameters 

By comparing the patterns of the cavity pressure, it becomes evident, that each switching 

point results in a different pressure profile. The red cavity pressure profile in Fig. 4 (left) 

shows an injection pressure that is insufficient to compress the melted polymer and fill the 

provided cavity, resulting in a short shot, sink mark and warpage. In addition, the edges are 

not filled sharply. As depicted by the orange curve in Fig 4, the pressure can also indicate 

overfilling of the cavity, leading to higher mass of the work pieces. An adequately set 

switching point leads to the aspired pressure, so that the melted polymer accomplishes  

a complete filling of the cavity without overfilling, but also generates sufficient compression 

of the melted polymer in the cavity. The characteristic cavity pressure profile of a properly 

adapted switching point illustrates the green line in Fig. 4 (left). Process monitoring and  

the potential of combined autonomous process controlling are important aspects to keep  

the quality of the produced parts constant and to avoid severe damage to the mold. 

Forecasting, stabilizing and assuring quality in mass production processes provide economic 

advantages based on sensor integration. 

4. USE-CASE ROLL FORMING 

The second example of sensor integration in tooling systems is a forming process. In 

many metal forming processes, intelligent tools with integrated sensors are used to monitor 

and control the process. Yang [63] gives an overview of smart metal forming by using die-

embedded sensors. Kim [64] used bolt type piezo-sensors to measure the load on the die, 

Hagino [65] used ultrasonic sensors to measure contact states between the work pieces and 
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the die. Yang [66] further used acoustic emission sensors for the detection of friction sources. 

In the following, the faced problems and chances through sensor integration in forming 

processes are discussed on the chosen example of roll forming. This process is a continuous, 

incremental forming process where a sheet of metal is formed through pairs of contoured 

rolls, which are aligned on shafts. The outer contour of these tools defines the shape of the 

produced profile. Up to 60 of these pairs of forming rolls are used to form the desired profile 

on a conventional roll forming line. Additionally, processes like welding, punching etc. allow 

to form very complex profile geometries used in a broad field of applications like building, 

agriculture, furniture etc. Roll forming is a process suitable for large quantities due to high 

production speeds. Therefore, these application scenarios provide great potential to overcome 

limits of non-sensorized settings. 

One of the challenges of the roll forming process compared to others are the high 

changeover times of roll forming lines for new work piece geometries and even for follow-

up productions. As the market demands higher flexibility and therefore smaller batch sizes, 

high number of changeover events and the resulting time efforts lead to reduced economic 

efficiency. The high set-up times are mainly caused by the geometry adjustments which are 

necessary on the line for each forming stage to produce a profile which fulfills the tolerance 

requirements. There are many ways, how a roll forming line can be tuned to reach the desired 

profile geometry even with the identical tool set. This means there is no “right” or “wrong” 

set of machine parameters, which makes the detection of process failure based on in-process 

data even more challenging. The detection of success and failure produced by a parameter set 

is a crucial factor to rate the setup and can currently only be rated by the output geometry. 

There are a few approaches how to reduce these problems. Müller 67, Traub et al. 68, 

Lindgren 69, Leonhartsberger 70, Lamprecht [71] and a few others, already showed sensor 

integration into roll forming stands on a laboratory scale to investigate the process or to 

validate simulations. According to these publications, the integration of load cells into roll 

forming stands, to measure occurring contact normal forces is an efficient solution to monitor 

the process. Traub et al. in 72 even showed the integration of a sensory feather key to 

measure the torques on different tools. Another possibility to measure occurring load-levels 

via sensing bolts is demonstrated by Groche and Brenneis in 73. However, most of these 

sensor integrations are used for research purposes. Commonly, the integration of such sensor 

equipment is not applicable in the industry in terms of costs, simply because an enormous 

number of roll forming stands is used in practise.   

In the last decade, finite element (FE) simulations have become the state of the art 

instrument when the process of roll forming is studied. In most finite element models,  

the rolls are considered to be rigid bodies [74–79]. As a consequence, the emerging forming 

forces are independent of the compliance of the tools. The simulations can be used to identify 

the needed force levels to shape the bend radii of the desired profile correctly. The adjustments 

on a roll forming mill to get the desired shape are still carried out manually and directly in  

the arrangement on the roll forming line. These processes, needed to meet the given tolerance 

fields on the machine, are very time-consuming. Traub et al. in 68 showed a way to reduce 

the setup times for recurring profile shape/material combinations by monitoring the occurring 

forces and torques and assisting the operator to adjust the line until all monitored quantities 

are near the known reference (recorded before).  
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In contrast, this study focuses on the tuning process for “correct” adjustment of the 

rolling stands before production, ex ante, by using data from simulations or geometric features 

recorded from prior productions. Thereby no in-process sensors need to be used. The perfor-

mance of the process is judged by installed sensors, which are just needed for validation. 

4.1. EXAMPLE SETUP AND METHODOLOGY OF FORCE SENSING IN ROLL FORMING 

In the course of these investigations, experiments with four forming passes were carried 

out to produce an unsymmetrical profile shown in Fig. 5 on the right side. All forming stages 

are equipped with force sensors (Kistler 9333A) integrated in the operator-side as well as the 

drive-side forming stands (Fig. 5 left). For detecting the output geometry, an automatic and 

laser-triangulation based scanning station (equipped with two Keyence LJ-V7200 - 2D Laser 

Profilers) is used to gather the 3D-data of every single profile during production.  

For the reference measurement Mref, the vertical positioning of the lower shafts remains 

unchanged, but the upper shaft is lowered until the load level of the corresponding simulation 

of the forming process with rigid and fixed forming rolls are established. This adjustment is 

then assessed by the output geometry of the profile, which is studied in detail to ensure its 

functionality. It could be revealed, that the force levels retrieved by simulations applied to  

the real process lead to sufficient profile geometry and a stable process. Further on,  

the measurement Mref serves as the reference experiment to evaluate the functionality of the 

sensor assisted set-up process in comparison to the conventional. To validate the performance 

of the developed setup process, the profile geometry and arising forces are compared to the 

reproduction realized by different machine operators. The operators find a machine totally 

maladjusted and have to readjust it to generate the desired profile shape.  

 

 

Fig. 5. Experimental setup and sensor integration 
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4.2. RESULTS OF SENSOR EQUIPPED ROLL FORMING PROCESS 

 Figure 6 shows the recorded contact normal forces in the forming stands and two 

corresponding characteristics of the output profile geometry derived from the 3D-data 

gathered by the mentioned scanning system. The different colors represent the forces recorded 

in the different forming stages of the profile. The grouped data is always one attempt to 

reproduce the reference state “Mref”. The bar groups MO1 to MO4 show the reproduction of the 

machine operators by the conventional process without the usage of sensors. The other bar 

groups show the reproduction of the geometric characteristics recorded in Mref by the 

described sensor assisted setup process.  

 

Fig. 6. Sensor equipped roll-forming leading to process stability 

Comparing the conventional to the sensor assisted set up process, the scattering of the 

forces of the sensor-assisted process is way smaller, which leads to smaller variations in  

the geometry of the profile (see Fig. 6). The study shows the possibility of ensuring 

reproduction of line adjustments by the geometric state determined before and after 
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production in roll forming. Furthermore, the sensor assisted process generates a more stable 

profile geometry compared to the conventional process in several trials. This leads to the 

implementation of an inexpensive and robust adjustment processes without the necessity  

of the integration of sensors in the production line. The realization is implemented by  

the prediction of occurring forces by FE-simulations and adjusting the machines by geometric 

characteristics. Hereby, the changeover times of recurring profiles may be dramatically 

reduced. These experiments pave the way to establish simulation models of the process where 

integrated accurate tool behavior under load is considered. The digital replication of the 

machine can then be used to predict the needed geometric characteristics on a roll forming 

mill to reach the needed force-levels of the individual forming steps. The replica further on 

can be used to i.e. identify the influence of varying input quality of the metal sheet  

on the profile geometry. 

5. HEAVY DUTY MILLING 

 Sensor integration into milling heads has been investigated in several research works 

and the already existing systems can be distinguished by way of data transmission.  

The measured cutting edge forces can be transmitted by a rotor system [80], near field 

communication [81] or via Bluetooth Low Energy [82].  

Especially when milling large steel blocks, sensor integrated tooling systems are of great 

interest. Forging skin and oxide scale layers (Fig. 7) on the parts, as well as geometrical 

deviation and scattering material properties effect the process and cause varying conditions 

that easily effect process stability as shown by Dombovari [83]. Standardizing these stochastic 

conditions is impossible. 

 

Fig. 7. Milling of big steel blocks with large scale milling heads 



16 F. Bleicher at al./Journal of Machine Engineering, 2021, Vol. 21, No. 1, 5–21 

 

Monitoring real production processes near to the cutting edge by sensor integration into 

the tooling system raises certain challenges. In this particular use-case, usually no coolant is 

used for reasons of machinability [84] and so the temperature situation caused by the process 

has a much larger impact on the durability of sensors and electronics. Therefore, the integrated 

electronic parts need to be temperature resistant and shock or vibration proof, besides  

the problem on needed installation space. 

Thus, an advanced approach with separated electronic circuits has been developed.  

The milling head gets equipped with temperature resistant electronics, but the battery,  

the telemetry system and acceleration measurement can be integrated into the adapter plate 

between the milling head and spindle. Thus, a new design was created combining the system 

of the instrumented tool holder with three PCBs (printed circuit boards) into one single PCB 

for integration into heavy duty milling machines, as shown in Fig. 8. The technology of the 

instrumented tool holder thus keeps its full functionality enhanced with the additional feature 

to deliver power supply and a transmission channel for a sensor integrated milling head 

conductively connected to the adapter plate. 

 

Fig. 8. Sensor integration into tool holder and adapter plate 

 

Fig. 9. Stabilizing milling process by real-time control based on sensor data 
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This design enables an additional data stream besides the acceleration data using  

the sensors, which can be located close to the cutting inserts. The sensory adapter plate 

transmits the gathered data to a stationary transceiver unit via a Bluetooth Low Energy 

communication channel. This transceiver uses a CAN interface to forward the data to a PC or 

special signal processing unit. The signal-processing unit provides possibilities for fast data 

analysis by a pre-defined algorithm and connection to networks or cloud services.  

On the one hand, a fast and real-time rule engine sets counter-measures like adaption  

of spindle speed and feed rate via analog or digital inputs toward the NC-system of the 

machine tool. On the other hand, provision of data to the manufacturing executing level and 

sophisticated analyses become possible for not time-critical operations like long-term quality 

control and CAM based optimization of machining sequences. 

A fast response and a specific adaption of the process are required for a feedback loop, 

so that a control system can cover stochastic process effects. The instrumented tool holder 

has been proven capable of chatter detection and mitigation [85, 86], as well as cutting edge 

chipping detection [87]. In the case, that a process is classified to be unstable, an automated 

adaption of spindle speed and feed rate can be applied in the real-time control loop. The use-

case in Fig. 9 illustrates the effect of process adaption, however, a rather long distance  

of insufficient quality processed under unstable conditions remains. This procedure of extra-

slow process adaptation was chosen for reasons of demonstration and visualization.  

The adaptation of real production processes is executed much faster, resulting in sufficient 

quality over the whole work piece. 

6. CONCLUSION 

In this paper, applications and use-cases for sensor integration in tooling systems have 

been presented and an overview of the sensor data utilization has been provided. In order to 

achieve an optimum performance of manufacturing processes and complex production 

systems, time-related information has to be accessible and available from close to the area  

of the interaction between tool and work piece. Correlating the sensor’s data with measurable 

physical properties of the produced parts is required for each application scenario individually 

to get a reliable statement or forecast regarding quality. Thus, sensor integration in tool 

systems enables economically valuable perspectives in different scenarios. 

• Serial production processes can be monitored and a forecast of the quality of the 

products is possible, even if only a black-box model is used. The area of application 

in injection molding for example, enables to monitor the part quality regarding 

constant mass through the measurement of mold cavity pressure. 

• Complex process models (white-box models) can be validated based on sensor data. 

Besides digital twins, quality assurance and reducing setup time based on sensor 

integration in tools have been presented by the use-case of roll forming. In this case, 

the integration of sensors will lead to deeper understanding of the process models. By 

their use to predict the processes forces, etc., extensive and thus costly sensor 

integration may be avoided in the industrial applications. 
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• Stochastic effects resulting from inhomogeneous work-piece material quality like 

oxide layer and forging skin in the case of heavy-duty milling take influence on the 

results  

of manufacturing processes. Real-time data evaluation of sensor information enables 

autonomous parameter adaption and therefore automated process control based on 

grey-box models. 

Increasingly smaller parts of microelectronic components and the available 

communication technologies together with reducing prices will lead to even more sensor 

equipped production processes and components of machine tools. The increased quantity  

of sensor-based data allows for enhanced functionalities in the field of condition monitoring 

and quality control. Analysis and evaluating of sensor data will play a more and more crucial 

role. AI (artificial intelligence) and digital twins or process models, respectively, offer 

technologies to improve date exploration. A promising aspect can be derived from the use  

of new time sensitive networking capable technologies, which will allow for more complex 

evaluation methods and deploy further real-time capabilities. 
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